Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Contemp Clin Trials Commun ; 37: 101250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312474

RESUMO

Efficient recruitment of eligible participants is a significant challenge for clinical research studies. This challenge was exacerbated during the COVID-19 pandemic when in-person recruitment was not an option. In 2020, the University of Minnesota was tasked, as part of the National Cancer Institute's Serological Sciences Network for COVID-19 (SeroNet), to recruit participants for a longitudinal serosurveillance clinical research study with a goal of characterizing the COVID-19 vaccine-elicited immune response among immunocompromised individuals, which necessitated reliance on non-traditional strategies for participant recruitment. To meet our enrollment target of 300 transplant patients, 300 cancer patients, 100 persons living with HIV, and 200 immunocompetent individuals, we utilized targeted electronic health record (EHR)-based recruitment in addition to traditional recruitment tools, which was an effective combination of recruitment strategies. A significant advantage of patient portal messaging or other digital recruitment strategies such as email communication is timing. We reached 85 % (769 out of 900) of our enrollment target within one year with a 14.3 % response rate to invitations to participate in our study. This achievement is perhaps more salient given the COVID-19 pandemic-related constraints within which we were operating. We demonstrated that the EHR can be leveraged to quickly identify potentially eligible study participants either via EHR communication or mail. We also illustrate how the online portal MyChart can be used to efficiently send targeted recruitment messages.

2.
Clin Proteomics ; 21(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172678

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy in women, and high-grade serous ovarian cancer (HGSOC) is the most common subtype. Currently, no clinical test has been approved by the FDA to screen the general population for ovarian cancer. This underscores the critical need for the development of a robust methodology combined with novel technology to detect diagnostic biomarkers for HGSOC in the sera of women. Targeted mass spectrometry (MS) can be used to identify and quantify specific peptides/proteins in complex biological samples with high accuracy, sensitivity, and reproducibility. In this study, we sought to develop and conduct analytical validation of a multiplexed Tier 2 targeted MS parallel reaction monitoring (PRM) assay for the relative quantification of 23 putative ovarian cancer protein biomarkers in sera. METHODS: To develop a PRM method for our target peptides in sera, we followed nationally recognized consensus guidelines for validating fit-for-purpose Tier 2 targeted MS assays. The endogenous target peptide concentrations were calculated using the calibration curves in serum for each target peptide. Receiver operating characteristic (ROC) curves were analyzed to evaluate the diagnostic performance of the biomarker candidates. RESULTS: We describe an effort to develop and analytically validate a multiplexed Tier 2 targeted PRM MS assay to quantify candidate ovarian cancer protein biomarkers in sera. Among the 64 peptides corresponding to 23 proteins in our PRM assay, 24 peptides corresponding to 16 proteins passed the assay validation acceptability criteria. A total of 6 of these peptides from insulin-like growth factor-binding protein 2 (IBP2), sex hormone-binding globulin (SHBG), and TIMP metalloproteinase inhibitor 1 (TIMP1) were quantified in sera from a cohort of 69 patients with early-stage HGSOC, late-stage HGSOC, benign ovarian conditions, and healthy (non-cancer) controls. Confirming the results from previously published studies using orthogonal analytical approaches, IBP2 was identified as a diagnostic biomarker candidate based on its significantly increased abundance in the late-stage HGSOC patient sera compared to the healthy controls and patients with benign ovarian conditions. CONCLUSIONS: A multiplexed targeted PRM MS assay was applied to detect candidate diagnostic biomarkers in HGSOC sera. To evaluate the clinical utility of the IBP2 PRM assay for HGSOC detection, further studies need to be performed using a larger patient cohort.

3.
ACS Pharmacol Transl Sci ; 6(12): 1924-1933, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38107255

RESUMO

High-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy in women. The low survival rate is largely due to drug resistance. Approximately 80% of patients who initially respond to treatment relapse and become drug-resistant. The lack of effective second-line therapeutics remains a substantial challenge for BRCA-1/2 wild-type HGSOC patients. Histone Deacetylases (HDACs) are promising targets in HGSOC treatment; however, the mechanism and efficacy of HDAC inhibitors are understudied in HGSOC. In order to consider HDACs as a treatment target, an improved understanding of their function within HGSOC is required. This includes elucidating HDAC6-specific protein-protein interactions. In this study, we carried out substrate trapping followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate HDAC6 catalytic domain (CD)-specific interactors in the context of BRCA-1/2 wild-type HGSOC. Overall, this study identified new HDAC6 substrates that may be unique to HGSOC. The HDAC6-CD1 mutant condition contained the largest number of significant proteins compared to the CD2 mutant and the CD1/2 mutant conditions, suggesting the HDAC6-CD1 domain has catalytic activity that is independent of CD2. Among the identified substrates were proteins involved in DNA damage repair including PARP proteins. These findings further justify the use of HDAC inhibitors as a combination treatment with platinum chemotherapy agents and PARP inhibitors in HGSOC.

4.
Expert Rev Proteomics ; 20(12): 439-450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116719

RESUMO

INTRODUCTION: An estimated 20,000 women in the United States will receive a diagnosis of ovarian cancer in 2023. Late-stage diagnosis is associated with poor prognosis. There is a need for novel diagnostic biomarkers for ovarian cancer to improve early-stage detection and novel prognostic biomarkers to improve patient treatment. AREAS COVERED: This review provides an overview of the clinicopathological features of ovarian cancer and the currently available biomarkers and treatment options. Two affinity-based platforms using proximity extension assays (Olink) and DNA aptamers (SomaLogic) are described in the context of highly reproducible and sensitive multiplexed assays for biomarker discovery. Recent developments in ion mobility spectrometry are presented as novel techniques to apply to the biomarker discovery pipeline. Examples are provided of how these aforementioned methods are being applied to biomarker discovery efforts in various diseases, including ovarian cancer. EXPERT OPINION: Translating novel ovarian cancer biomarkers from candidates in the discovery phase to bona fide biomarkers with regulatory approval will have significant benefits for patients. Multiplexed affinity-based assay platforms and novel mass spectrometry methods are capable of quantifying low abundance proteins to aid biomarker discovery efforts by enabling the robust analytical interrogation of the ovarian cancer proteome.


Assuntos
Neoplasias Ovarianas , Proteômica , Humanos , Feminino , Proteômica/métodos , Detecção Precoce de Câncer , Biomarcadores Tumorais , Neoplasias Ovarianas/diagnóstico , Espectrometria de Massas/métodos , Proteoma/metabolismo
5.
J Mass Spectrom Adv Clin Lab ; 28: 30-34, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36865788

RESUMO

Mass spectrometry (MS)-based clinical proteomic Laboratory Developed Tests (LDTs) for the measurement of protein biomarkers related to endocrinology, cardiovascular disease, cancer, and Alzheimer's disease are gaining traction in clinical laboratories due to their value in supporting diagnostic and treatment decisions for patients. Under the current regulatory landscape, MS-based clinical proteomic LDTs are regulated by Clinical Laboratory Improvement Amendments (CLIA) under the auspices of the Centers for Medicaid and Medicare Services (CMS). However, should the Verifying Accurate Leading-Edge In Vitro Clinical Test Development (VALID) Act pass, it will grant the FDA greater authority to oversee diagnostic tests, including LDTs. This could impede clinical laboratories' ability to develop new MS-based proteomic LDTs to support existing and emerging patient care needs. Therefore, this review discusses the currently available MS-based proteomic LDTs and their current regulatory landscape in the context of the potential impacts imposed by the passage of the VALID Act.

6.
Proteomics ; 23(3-4): e2100372, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36193784

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy in women. Its low survival rate is attributed to late detection, relapse, and drug resistance. The lack of effective second-line therapeutics remains a significant challenge. There is an opportunity to incorporate the use of histone deacetylase inhibitors (HDACi) into HGSOC treatment. However, the mechanism and efficacy of HDACi in the context of BRCA-1/2 mutation status is understudied. Therefore, we set out to elucidate how HDACi perturb the proteomic landscape within HGSOC cells. In this work, we used TMT labeling followed by data-dependent acquisition LC-MS/MS to quantitatively determine differences in the global proteomic landscape across HDACi-treated CAOV3, OVCAR3, and COV318 (BRCA-1/2 wildtype) HGSOC cells. We identified significant differences in the HDACi-induced perturbations of global protein regulation across CAOV3, OVCAR3, and COV318 cells. The HDACi Vorinostat and Romidepsin were identified as being the least and most effective in inhibiting HDAC activity across the three cell lines, respectively. Our results provide a justification for the further investigation of the functional mechanisms associated with the differential efficacy of FDA-approved HDACi within the context of HGSOC. This will enhance the efficacy of targeted HGSOC therapeutic treatment modalities that include HDACi.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Ovarianas , Feminino , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteoma , Apoptose , Cromatografia Líquida , Proteômica , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Espectrometria de Massas em Tandem
7.
J Pediatr ; 255: 260, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36400240
8.
Methods Mol Biol ; 2603: 219-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370283

RESUMO

Antibody-based affinity purification is a recognized method for use in studying protein-protein interactions. There are four different classes of proteins that are typically identified with such affinity purification workflows: bait protein, proteins that specifically interact with the bait protein, proteins nonspecifically associated with the antibody, and proteins that cross-react with the antibody. Mass spectrometry can be used to differentiate these classes of proteins in affinity-purified mixtures. Here we describe the use of stable isotope labeling by amino acids in cell culture, substrate trapping, and mass spectrometry to enable the objective identification of the components of affinity-purified protein complexes.


Assuntos
Aminoácidos , Proteômica , Marcação por Isótopo/métodos , Proteômica/métodos , Aminoácidos/química , Espectrometria de Massas/métodos , Proteínas/química , Técnicas de Cultura de Células
9.
Nat Rev Methods Primers ; 2(1): 96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532107

RESUMO

Mass spectrometry is a powerful analytical tool used for the analysis of a wide range of substances and matrices; it is increasingly utilized for clinical applications in laboratory medicine. This Primer includes an overview of basic mass spectrometry concepts, focusing primarily on tandem mass spectrometry. We discuss experimental considerations and quality management, and provide an overview of some key applications in the clinic. Lastly, the Primer discusses significant challenges for implementation of mass spectrometry in clinical laboratories and provides an outlook of where there are emerging clinical applications for this technology.

10.
Oncotarget ; 13: 768-783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634242

RESUMO

Cancer cells undergo alterations in lipid metabolism to support their high energy needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian cancer (OC) is a common gynecological malignancy with a high rate of aggressive carcinoma progression and drug resistance. The accumulation of unsaturated fatty acids in ovarian cancer supports cell growth, increased cancer cell migration, and worse patient outcomes. Ovarian cancer cells also expand their lipid stores via increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid uptake promote chemotherapy resistance and dampen the adaptive immune response needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring poor prognosis and outcomes in patients. We also cover some aspects of how lipids fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular lipid content could potentially serve as biomarkers of ovarian cancer.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Ovarianas , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Carcinogênese , Carcinoma Epitelial do Ovário , Ácido Graxo Sintases/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipogênese , Lipoproteínas LDL/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Estearoil-CoA Dessaturase/metabolismo
11.
Sci Rep ; 12(1): 8890, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614113

RESUMO

We assessed the feasibility of a highly sensitive immunoassay method based on single molecule array (Simoa) technology to detect IgG and IgA antibodies against SARS-CoV-2 spike protein receptor binding domain (RBD) in saliva from individuals with natural or vaccine-induced COVID-19 immunity. The performance of the method was compared to a laboratory-developed SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay (ELISA). Paired serum and saliva specimens were collected from individuals (n = 40) prior to and 2 weeks after receiving an initial prime COVID-19 vaccine dose (Pfizer/BioNTech BNT162b2 or Moderna mRNA-1273). Saliva was collected using a commercially available collection device (OraSure Inc.) and SARS-CoV-2 RBD IgG antibodies were measured by an indirect ELISA using concentrated saliva samples and a Simoa immunoassay using unconcentrated saliva samples. The IgG results were compared with paired serum specimens that were analyzed for total RBD antibodies using the ELISA method. The analytical sensitivity of the saliva-based Simoa immunoassay was five orders of magnitude higher than the ELISA assay: 0.24 pg/mL compared to 15 ng/mL. The diagnostic sensitivity of the saliva ELISA method was 90% (95% CI 76.3-97.2%) compared to 91.7% (95% CI 77.5-98.2%) for the Simoa immunoassay without total IgG-normalization and 100% (95% CI 90.3-100%) for the Simoa immunoassay after total IgG-normalization when compared to the serum ELISA assay. When analyzed using the SARS-CoV-2 RBD IgG antibody ELISA, the average relative increase in antibody index (AI) between the saliva of the post- and pre-vaccinated individuals was 8.7 (AIpost/pre). An average relative increase of 431 pg/mL was observed when the unconcentrated saliva specimens were analyzed using the Simoa immunoassay (SARS-CoV-2 RBD IgGpost/pre). These findings support the suitability of concentrated saliva specimens for the measurement of SARS-CoV-2 RBD IgG antibodies via ELISA, and unconcentrated saliva specimens for the measurement of SARS-CoV-2 RBD IgG and IgA using an ultrasensitive Simoa immunoassay.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunoglobulina G , SARS-CoV-2 , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/diagnóstico , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Humanos , Imunoglobulina A/química , Imunoglobulina A/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
12.
J Pediatr ; 245: 179-183.e8, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35248569

RESUMO

OBJECTIVE: To evaluate the suitability of urine samples collected with cotton balls placed into diapers for routine laboratory chemistry analyses. STUDY DESIGN: Twenty pools of residual unpreserved urine samples were separated into control and treated aliquots. The treated samples were absorbed into 2 different brands of cotton balls, wrapped in 3 different brands of diapers, and incubated at 37°C for 1 hour. The urine-soaked cotton balls were placed into a syringe and expressed via plunger depression. Urine sodium, potassium, creatinine, urea, calcium, magnesium, inorganic phosphorus, albumin, and total protein were measured on all samples on 5 automated clinical chemistry platforms: Ortho Vitros 4600, Siemens Dimension Vista 500, Beckman Coulter AU5822, Roche Cobas 6000, and Abbott Architect c8000 at 5 separate hospital laboratories. Criteria used to exclude the presence of significant effects of urine from presoaked cotton balls in a diaper on the measurement of chemistry laboratory tests were R2 >0.95, slope of 0.9-1.1, and mean bias within ±10%. RESULTS: Albumin and total protein measurements demonstrated significant negative bias in urine from both brands of presoaked cotton balls with all brands of diapers on all 5 chemistry platforms compared with the control urine. We did not observe a significant effect of presoaking urine in cotton balls in a diaper on the measurement of sodium, inorganic phosphorus, and urea. The remaining tests demonstrated significant effects when measured in urine from presoaked cotton balls and/or diapers that were specific to the chemistry analyzer platform or diaper. CONCLUSIONS: Diaper and cotton ball-based urine collection significantly impacts the measurement of several common chemistry assays.


Assuntos
Fibra de Algodão , Manejo de Espécimes , Urinálise , Albuminas , Fraldas Infantis , Humanos , Fósforo , Sódio , Manejo de Espécimes/instrumentação , Ureia , Urinálise/métodos
13.
J Am Soc Mass Spectrom ; 33(2): 242-250, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958553

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most common form of ovarian cancer diagnosed in patients worldwide. Patients with BRCA1/2-mutated HGSOC have benefited from targeted treatments such as poly(ADP-ribose) polymerase inhibitors (PARPi). Despite the initial success of PARPi-based ovarian cancer treatment regimens, approximately 70% of patients with ovarian cancer relapse and the 5-year survival rate remains at 30%. PARPi exhibit variable treatment efficacy and toxicity profiles. Furthermore, the off-target effects of PARP inhibition have not yet been fully elucidated, warranting further study of these classes of molecules in the context of HGSOC treatment. Highly reproducible quantitative mass spectrometry-based proteomic workflows have been developed for the analysis of tumor tissues and cell lines. To detect the off-target effects of PARP inhibition, we conducted a quantitative mass spectrometry-based proteomic analysis of a BRCA1-mutated HGSOC cell line treated with low doses of two PARPi, niraparib and rucaparib. Our goal was to identify PARPi-induced protein signaling pathway alterations toward a more comprehensive elucidation of the mechanism of action of PARPi beyond the DNA damage response pathway. A significant enrichment of nuclear and nucleoplasm proteins that are involved in protein binding was observed in the rucaparib-treated cells. Shared upregulated proteins between niraparib and rucaparib treatment demonstrated RNA II pol promoter-associated pathway enrichment in transcription regulation. Pathway enrichment analyses also revealed off-target effects in the Golgi apparatus and the ER. The results from our mass spectrometry-based proteomic analysis highlights notable off-target effects produced by low-dose treatment of BRCA1-mutated HGSOC cells treated with rucaparib or niraparib.


Assuntos
Indazóis/farmacologia , Indóis/farmacologia , Espectrometria de Massas/métodos , Neoplasias Ovarianas/tratamento farmacológico , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteômica/métodos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Mitocôndrias/efeitos dos fármacos , Gradação de Tumores , Neoplasias Ovarianas/patologia , Transdução de Sinais
14.
Sci Rep ; 11(1): 18936, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556748

RESUMO

Prostate cancer (PCa) is a heterogeneous group of tumors with variable clinical courses. In order to improve patient outcomes, it is critical to clinically separate aggressive PCa (AG) from non-aggressive PCa (NAG). Although recent genomic studies have identified a spectrum of molecular abnormalities associated with aggressive PCa, it is still challenging to separate AG from NAG. To better understand the functional consequences of PCa progression and the unique features of the AG subtype, we studied the proteomic signatures of primary AG, NAG and metastatic PCa. 39 PCa and 10 benign prostate controls in a discovery cohort and 57 PCa in a validation cohort were analyzed using a data-independent acquisition (DIA) SWATH-MS platform. Proteins with the highest variances (top 500 proteins) were annotated for the pathway enrichment analysis. Functional analysis of differentially expressed proteins in NAG and AG was performed. Data was further validated using a validation cohort; and was also compared with a TCGA mRNA expression dataset and confirmed by immunohistochemistry (IHC) using PCa tissue microarray (TMA). 4,415 proteins were identified in the tumor and benign control tissues, including 158 up-regulated and 116 down-regulated proteins in AG tumors. A functional analysis of tumor-associated proteins revealed reduced expressions of several proteinases, including dipeptidyl peptidase 4 (DPP4), carboxypeptidase E (CPE) and prostate specific antigen (KLK3) in AG and metastatic PCa. A targeted analysis further identified that the reduced expression of DPP4 was associated with the accumulation of DPP4 substrates and the reduced ratio of DPP4 cleaved peptide to intact substrate peptide. Findings were further validated using an independently-collected tumor cohort, correlated with a TCGA mRNA dataset, and confirmed by immunohistochemical stains of PCa tumor microarray (TMA). Our study is the first large-scale proteomics analysis of PCa tissue using a DIA SWATH-MS platform. It provides not only an interrogative proteomic signature of PCa subtypes, but also indicates the critical roles played by certain proteinases during tumor progression. The spectrum map and protein profile generated in the study can be used to investigate potential biological mechanisms involved in PCa and for the development of a clinical assay to distinguish aggressive from indolent PCa.


Assuntos
Carboxipeptidase H/metabolismo , Dipeptidil Peptidase 4/metabolismo , Regulação Neoplásica da Expressão Gênica , Calicreínas/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Conjuntos de Dados como Assunto , Seguimentos , Perfilação da Expressão Gênica , Humanos , Masculino , Gradação de Tumores , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Proteômica/estatística & dados numéricos , Análise Serial de Tecidos
15.
Molecules ; 26(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063568

RESUMO

Ovarian cancer is the most lethal gynecologic malignancy among women. Approximately 70-80% of patients with advanced ovarian cancer experience relapse within five years and develop platinum-resistance. The short life expectancy of patients with platinum-resistant or platinum-refractory disease underscores the need to develop new and more effective treatment strategies. Early detection is a critical step in mitigating the risk of disease progression from early to an advanced stage disease, and protein biomarkers have an integral role in this process. The best biological diagnostic tool for ovarian cancer will likely be a combination of biomarkers. Targeted proteomics methods, including mass spectrometry-based approaches, have emerged as robust methods that can address the chasm between initial biomarker discovery and the successful verification and validation of these biomarkers enabling their clinical translation due to the robust sensitivity, specificity, and reproducibility of these versatile methods. In this review, we provide background information on the fundamental principles of biomarkers and the need for improved treatment strategies in ovarian cancer. We also provide insight into the ways in which mass spectrometry-based targeted proteomics approaches can provide greatly needed solutions to many of the challenges related to ovarian cancer biomarker development.


Assuntos
Biomarcadores Tumorais/metabolismo , Espectrometria de Massas/métodos , Neoplasias Ovarianas/metabolismo , Proteômica/métodos , Carcinoma Epitelial do Ovário/diagnóstico , Detecção Precoce de Câncer , Feminino , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/diagnóstico , Proteoma , Reprodutibilidade dos Testes
16.
Clin Chim Acta ; 519: 48-50, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33826952

RESUMO

BACKGROUND: We report a unique case of transient hyperphosphatasemia in a pediatric patient with a history of hepatic and skeletal abnormalities. PATIENT AND METHODS: A 2-month old male was diagnosed with progressive familial intrahepatic cholestasis type-2 and osteoporosis after marked increases in liver function tests were noted at 1 month of age. He underwent a second liver transplantation at 1 y. The increased liver function test trend resolved a few weeks post-transplantation. Four months after successful liver transplantation, unexplained significant increases in alkaline phosphatase (ALP) were observed, and they persisted for almost 9 months. Among the etiologies under consideration for the isolated increased ALP activity were viral infections and macro-ALP. RESULTS: A persistent trend in abnormally increased ALP for 9 months was investigated leading to a confirmed diagnosis of transient hyperphosphatasemia (TH). CONCLUSION: Pediatric post-liver transplant patients with skeletal and hepatic abnormalities including isolated markedly increased ALP activities represent a previously undescribed TH patient population. The 4.3% prevalence of TH in pediatric liver transplant recipients within our healthcare system is considerably higher than the previously reported prevalence of 2.1% for patients within the United States.


Assuntos
Colestase Intra-Hepática , Transplante de Fígado , Fosfatase Alcalina , Criança , Humanos , Lactente , Transplante de Fígado/efeitos adversos , Masculino , Prevalência
17.
Clin Med Insights Case Rep ; 14: 1179547621999409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746520

RESUMO

Mucopolysaccharidosis IVA (MPS IVA) is a rare autosomal recessive lysosomal storage disorder resulting from N-acetylgalactosamine-6-sulfatase (GALNS) deficiency that occurs in approximately 1 in 76 000 to 1 in 640 000 live births. Given that the diagnosis of MPS IVA relies heavily on the results of initial urine glycosaminoglycan (GAG) screening, cases that present with falsely normal urine GAG concentrations can delay the diagnosis and follow-up care for patients. This case study follows a patient diagnosed with MPS IVA at 9 months of age based on relation to a consanguineous 3-year-old sibling with MPS IVA and the use of direct enzyme activity analysis. Details regarding skeletal presentation and identification of genetic variants are presented along with data on follow-up urinary GAG monitoring during treatment with enzyme replacement therapy and treatment for a growth hormone disorder.

18.
Clin Biochem ; 90: 15-22, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33539808

RESUMO

OBJECTIVES: To avoid the significant risks posed by the use of COVID-19 serology tests with supply chain constraints or poor performance characteristics, we developed an in-house SARS-CoV-2 total antibody test. Our test was compared with three commercial methods, and was used to determine COVID-19 seroprevalence among healthcare workers and outpatients in Minnesota. METHODS: Seventy-nine plasma and serum samples from 50 patients 4-69 days after symptom onset who tested positive by a SARS-CoV-2 PCR method using a nasopharyngeal (NP) swab were used to evaluate our test's clinical performance. Seropositive samples were analyzed for IgG titers in a follow-up assay. Thirty plasma and serum from 12 patients who tested negative by a SARS-CoV-2 PCR method using a nasopharyngeal (NP) swab and 210 negative pre-pandemic serum samples were also analyzed. Among samples from patients > 14 days after symptom onset, the assay had 100% clinical sensitivity and 100% clinical specificity, 100% positive predictive value and 100% negative predictive value. Analytical specificity was 99.8%, indicating minimal cross-reactivity. A screening study was conducted to ascertain COVID-19 seroprevalence among healthcare workers and outpatients in Minnesota. RESULTS: Analysis of serum collected between April 13 and May 21, 2020 indicated a COVID-19 seroprevalence of 2.96% among 1,282 healthcare workers and 4.46% among 2,379 outpatients. CONCLUSIONS: Our in-house SARS-CoV-2 total antibody test can be used to conduct reliable epidemiological studies to inform public health decisions during the COVID-19 pandemic.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pessoal de Saúde , Pacientes Ambulatoriais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , COVID-19/imunologia , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Masculino , Pessoa de Meia-Idade , Minnesota/epidemiologia , SARS-CoV-2/isolamento & purificação , Estudos Soroepidemiológicos , Adulto Jovem
19.
Cell Rep ; 33(3): 108276, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086064

RESUMO

Many gene products exhibit great structural heterogeneity because of an array of modifications. These modifications are not directly encoded in the genomic template but often affect the functionality of proteins. Protein glycosylation plays a vital role in proper protein functions. However, the analysis of glycoproteins has been challenging compared with other protein modifications, such as phosphorylation. Here, we perform an integrated proteomic and glycoproteomic analysis of 83 prospectively collected high-grade serous ovarian carcinoma (HGSC) and 23 non-tumor tissues. Integration of the expression data from global proteomics and glycoproteomics reveals tumor-specific glycosylation, uncovers different glycosylation associated with three tumor clusters, and identifies glycosylation enzymes that were correlated with the altered glycosylation. In addition to providing a valuable resource, these results provide insights into the potential roles of glycosylation in the pathogenesis of HGSC, with the possibility of distinguishing pathological outcomes of ovarian tumors from non-tumors, as well as classifying tumor clusters.


Assuntos
Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Feminino , Glicoproteínas/metabolismo , Glicosilação , Humanos , Neoplasias Ovarianas/patologia , Proteômica/métodos , Bancos de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...